资源类型

期刊论文 165

年份

2023 10

2022 10

2021 11

2020 15

2019 10

2018 15

2017 13

2016 7

2015 9

2014 6

2013 3

2012 8

2011 6

2010 11

2009 8

2008 6

2007 6

2006 3

2005 1

2003 1

展开 ︾

关键词

中子通量密度 2

无氢渗碳 2

BNCT医院中子照射器 1

Fitzhugh-Nagumo;混沌;分数阶;磁通量 1

MOF基催化剂 1

PET酶 1

PET降解 1

Si/Al 比值 1

X射线自由电子激光 1

三维含孔洞结构 1

不良妊娠结局 1

严重事故 1

中子和γ吸收剂量率 1

中子能谱 1

中微子 1

临界热流密度 1

临界热辐射通量 1

亲钠性铋基材料 1

催化还原 1

展开 ︾

检索范围:

排序: 展示方式:

Influence of the filler materials on flux-free brazing of pure aluminium (1050)

Kirsten BOBZIN, Lidong ZHAO, Thomas SCHLAEFER, Thomas WARDA,

《机械工程前沿(英文)》 2010年 第5卷 第1期   页码 47-51 doi: 10.1007/s11465-009-0079-9

摘要: In the present study, samples of pure aluminium (1050) were deposited by cold spraying with filler materials such as Al12Si, Al7Si, Al12Si-4%Cu, and the Al-Si-based filler material A, which was especially developed for flux-free brazing by the Surface Engineering Institute. Besides, pure Si powder was also sprayed. The coated samples were heat-treated under different conditions and were brazed under an argon atmosphere without fluxes or with the flux Nokolok by an induction heating system. The shear strength of the brazed joints was determined. The results show that the filler materials could be well deposited by cold spraying. A thin layer of brittle Si could also form due to the strong deformation of the substrate surface. The heat treatments showed that a very good metallurgical bond between the filler materials and the substrate could be realized by the deposition by cold spraying. The Al7Si deposited samples could not be brazed without fluxes under the given conditions. The samples deposited with other filler materials could be brazed without fluxes. The in-situ diffusion process made it possible to braze the Si-deposited samples at 580°C. The joints of the samples deposited with the filler material showed the highest shear strength of 41 MPa, whereas the values of the Al12Si and Si deposited samples were less than 20 MPa. The employment of the flux Nikolok significantly increased the shear strength of the Al12Si deposited samples to more than 53 MPa.

关键词: aluminium     flux-free brazing     cold spraying     shear strength    

Application of cold spraying for flux-free brazing of aluminium alloy 6060

Kirsten BOBZIN, Lidong ZHAO, Thomas SCHLAEFER, Thomas WARDA,

《机械工程前沿(英文)》 2010年 第5卷 第3期   页码 256-260 doi: 10.1007/s11465-010-0095-9

摘要: In the present study, samples of aluminium alloy 6060 were coated by cold spraying with a powder of brazing alloy Al12Si. The influence of the process gas temperature on particle velocities and coating build-up was investigated. The coated samples were heat-treated in air and under argon atmosphere to investigate the wetting behaviour of the deposited Al12Si and the diffusion processes between Al12Si coatings and substrates. Coated samples were brazed flux-free under argon atmosphere by an induction heating system. The microstructure of the coated, heat-treated, and brazed samples was investigated. The shear strength of the brazed joints was determined. The results show that the brazing alloy Al12Si could be very well deposited on the substrate by cold spraying. The particle velocity increased with increasing process temperature. Correspondingly, the thickness of Al12Si coatings increased with increasing process temperature. The heat treatments showed that a very good metallurgical bond between the Al12Si coatings and the substrate could be realized by the deposition using cold spraying. The coated samples could be well brazed without fluxes. The coating thickness and overlap width influenced the shear strength of the brazed joints. The highest shear strength of brazed joints amounts to 80 MPa.

关键词: aluminium alloy     flux-free brazing     cold spraying     shear strength    

Flux-free brazing of Mg-containing aluminium alloys by means of cold spraying

BOBZIN Kirsten, ZHAO Lidong, ERNST Felix, RICHARDT Katharina

《机械工程前沿(英文)》 2008年 第3卷 第4期   页码 355-359 doi: 10.1007/s11465-008-0055-9

摘要: In the present study, AlSi12 and AlSi10Cu4 were deposited onto Mg-containing aluminium alloys 6063 and 5754 by cold spraying. The influences of the two brazing alloys and spray parameters on coating formation were investigated. The microstructure of the coatings was characterized. Some coated samples were heat-treated at 590°C and 560°C in air to investigate the effect of the rupture of oxide scales on the diffusion of elements during heat-treatment. Some coated samples were brazed under argon atmosphere without any fluxes. The results show that AlSi12 had much better deposition behaviour than AlSi10Cu4. Due to the rupture of oxide scales, Cu and Si diffused into the substrate and a metallurgical bond formed between the brazing alloys and the substrates during heat-treatment. The coated samples could be brazed without any fluxes. Because the oxide scales prevented the formation of a metallurgical bond locally, the brazed samples had relatively low shear strengths of up to 43 MPa.

关键词: diffusion     metallurgical     substrate     Mg-containing aluminium     spraying    

Wide gap active brazing of ceramic-to-metal-joints for high temperature applications

K. Bobzin,L. Zhao,N. Kopp,S. Samadian Anavar

《机械工程前沿(英文)》 2014年 第9卷 第1期   页码 71-74 doi: 10.1007/s11465-014-0291-0

摘要:

Applications like solid oxide fuel cells and sensors increasingly demand the possibility to braze ceramics to metals with a good resistance to high temperatures and oxidative atmospheres. Commonly used silver based active filler metals cannot fulfill these requirements, if application temperatures higher than 600°C occur. Au and Pd based active fillers are too expensive for many fields of use. As one possible solution nickel based active fillers were developed. Due to the high brazing temperatures and the low ductility of nickel based filler metals, the modification of standard nickel based filler metals were necessary to meet the requirements of above mentioned applications. To reduce thermally induced stresses wide brazing gaps and the addition of Al2O3 and WC particles to the filler metal were applied. In this study, the microstructure of the brazed joints and the thermo-chemical reactions between filler metal, active elements and WC particles were analyzed to understand the mechanism of the so called wide gap active brazing process. With regard to the behavior in typical application oxidation and thermal cycle tests were conducted as well as tensile tests.

关键词: wide gap     active brazing     nickel filler metals     high temperature application     WC     Al2O3    

High heat flux thermal management through liquid metal driven with electromagnetic induction pump

《能源前沿(英文)》 2022年 第16卷 第3期   页码 460-470 doi: 10.1007/s11708-022-0825-9

摘要: In this paper, a novel liquid metal-based minichannel heat dissipation method was developed for cooling electric devices with high heat flux. A high-performance electromagnetic induction pump driven by rotating permanent magnets is designed to achieve a pressure head of 160 kPa and a flow rate of 3.24 L/min, which could enable the liquid metal to remove the waste heat quickly. The liquid metal-based minichannel thermal management system was established and tested experimentally to investigate the pumping capacity and cooling performance. The results show that the liquid metal cooling system can dissipate heat flux up to 242 W/cm2 with keeping the temperature rise of the heat source below 50°C. It could remarkably enhance the cooling performance by increasing the rotating speed of permanent magnets. Moreover, thermal contact resistance has a critical importance for the heat dissipation capacity. The liquid metal thermal grease is introduced to efficiently reduce the thermal contact resistance (a decrease of about 7.77 × 10−3 °C/W). This paper provides a powerful cooling strategy for thermal management of electric devices with large heat power and high heat flux.

关键词: high heat flux     liquid metal     electromagnetic pump     minichannel heat sink     thermal interface material    

Observation of bioturbation and hyporheic flux in streambeds

Jinxi SONG, Xunhong CHEN, Cheng CHENG,

《环境科学与工程前沿(英文)》 2010年 第4卷 第3期   页码 340-348 doi: 10.1007/s11783-010-0233-y

摘要: In the Elkhorn River, burrows, tubes, and sediment mounds created by invertebrate bioturbation were observed in the exposed streambed and commonly concentrated on the fine-sediment patches, which consist of silt, clay, and organic matter. These invertebrate activities could loosen the thin layer of clogging sediments and result in an increase of pore size in the sediments, leading to greater vertical hydraulic conductivity of the streambed (). The measurements of the vertical hydraulic gradient across the submerged streambed show that vertical flux in the hyporheic zone can alter directions (upward versus downward) for two locations only a few meters apart. In situ permeameter tests show that streambed in the upper sediment layer is much higher than that in the lower sediment layer, and the calculated in the submerged streambed is consistently greater than that in the clogged sediments around the shorelines of the sand bars. Moreover, a phenomenon of gas bubble release at the water-sediment interface from the subsurface sediments was observed in the groundwater seepage zone where flow velocity is extremely small. The bursting of gas bubbles can potentially break the thin clogging layer of sediments and enhance the vertical hydraulic conductivity of the streambed.

关键词: invertebrate bioturbation     clogging     hyporheic exchange     streambed     the Elkhorn River    

Flow, thermal, and vibration analysis using three dimensional finite element analysis for a flux reversal

B. VIDHYA,K. N. SRINIVAS

《能源前沿(英文)》 2016年 第10卷 第4期   页码 424-440 doi: 10.1007/s11708-016-0423-9

摘要: This paper presents the simulation of major mechanical properties of a flux reversal generator (FRG) viz., computational fluid dynamic (CFD), thermal, and vibration. A three-dimensional finite element analysis (FEA) based CFD technique for finding the spread of pressure and air velocity in air regions of the FRG is described. The results of CFD are mainly obtained to fine tune the thermal analysis. Thus, in this focus, a flow analysis assisted thermal analysis is presented to predict the steady state temperature distribution inside FRG. The heat transfer coefficient of all the heat producing inner walls of the machine are evaluated from CFD analysis, which forms the main factor for the prediction of accurate heat distribution. The vibration analysis is illustrated. Major vibration sources such as mechanical, magnetic and applied loads are covered elaborately which consists of a 3D modal analysis to find the natural frequency of FRG, a 3D static stress analysis to predict the deformation of the stator, rotor and shaft for different speeds, and an unbalanced rotor harmonic analysis to find eccentricity of rotor to make sure that the vibration of the rotor is within the acceptable limits. Harmonic analysis such as sine sweep analysis to identify the range of speeds causing high vibrations and steady state vibration at a mode frequency of 1500 Hz is presented. The vibration analysis investigates the vibration of the FRG as a whole, which forms the contribution of this paper in the FRG literature.

关键词: flux reversal generator     air velocity     computation fluid dynamics     thermal analysis     vibration analysis     finite element analysis    

Preparation of reverse osmosis membrane with high permselectivity and anti-biofouling properties for desalination

《环境科学与工程前沿(英文)》 2022年 第16卷 第7期 doi: 10.1007/s11783-021-1497-0

摘要:

• Nanoparticle incorporation and anti-biofouling grafting were integrated.

关键词: Anti-biofouling grafting     Nanoparticle incorporation     Sterilization rates     Water flux     Water flux recovery    

Numerical simulation of the heat flux distribution in a solar cavity receiver

Yueshe WANG, Xunwei DONG, Jinjia WEI, Hui JIN

《能源前沿(英文)》 2011年 第5卷 第1期   页码 98-103 doi: 10.1007/s11708-010-0019-8

摘要: In the solar tower power plant, the receiver is one of the main components of efficient concentrating solar collector systems. In the design of the receiver, the heat flux distribution in the cavity should be considered first. In this study, a numerical simulation using the Monte Carlo Method has been conducted on the heat flux distribution in the cavity receiver, which consists of six lateral faces and floor and roof planes, with an aperture of 2.0 m×2.0 m on the front face. The mathematics and physical models of a single solar ray’s launching, reflection, and absorption were proposed. By tracing every solar ray, the distribution of heat flux density in the cavity receiver was obtained. The numerical results show that the solar flux distribution on the absorbing panels is similar to that of CESA-I’s. When the reradiation from walls was considered, the detailed heat flux distributions were issued, in which 49.10% of the total incident energy was absorbed by the central panels, 47.02% by the side panels, and 3.88% was overflowed from the aperture. Regarding the peak heat flux, the value of up to 1196.406 kW/m was obtained in the center of absorbing panels. These results provide necessary data for the structure design of cavity receiver and the local thermal stress analysis for boiling and superheated panels.

关键词: solar cavity receiver     Monte Carlo method     heat flux distribution    

Heat transfer characteristics of high heat flux vapor chamber

Dongchuan MO, Shushen LU, Haoliang ZHENG, Chite CHIN,

《能源前沿(英文)》 2010年 第4卷 第2期   页码 166-170 doi: 10.1007/s11708-009-0076-z

摘要: To meet the challenge of heat spreading in electronic products, highly efficient high heat flux heat transfer vapor chambers have been manufactured and their heat transfer characteristics have been studied by a fast test system. A solid copper block with the same shape as the vapor chamber is used to compare the performance of the vapor chamber. The result shows that, it will take about 5min to achieve a steady state in the fast test system. The heat transfer characteristics of the vapor chamber are more superior to those of the copper block. In this paper, total thermal resistance of the test system is used to evaluate the heat transfer characteristics of the vapor chamber, because it has already been used to consider both the spreading thermal resistance and the flatness of the vapor chamber.

关键词: high heat flux     vapor chamber (VC)     heat transfer characteristics     fast test    

Metabolic flux analysis on arachidonic acid fermentation

JIN Mingjie, HUANG He, ZHANG Kun, YAN Jie, GAO Zhen

《化学科学与工程前沿(英文)》 2007年 第1卷 第4期   页码 421-426 doi: 10.1007/s11705-007-0077-6

摘要: The analysis of flux distributions in metabolic networks has become an important approach for understanding the fermentation characteristics of the process. A model of metabolic flux analysis of arachidonic acid (AA) synthesis in ME-1 was established and carbon flux distributions were estimated in different fermentation phases with different concentrations of N-source. During the exponential, decelerating and stationary phase, carbon fluxes to AA were 3.28%, 8.80% and 6.97%, respectively, with sufficient N-source broth based on the flux of glucose uptake, and those were increased to 3.95%, 19.21% and 39.29%, respectively, by regulating the shifts of carbon fluxes via fermentation with limited N-source broth and adding 0.05% NaNO at 96 h. Eventually AA yield was increased from 1.3 to 3.5 g · L. These results suggest a way to improve AA fermentation, that is, fermentation with limited N-source broth and adding low concentration N-source during the stationary phase.

关键词: AA     different fermentation     concentration N-source     exponential     metabolic    

Heat flux distribution on circulating fluidized bed boiler water wall

LU Junfu, YUE Guangxi, YANG Hairui, ZHANG Jiansheng, YU Long, ZHANG Man, YANG Zhongming

《能源前沿(英文)》 2008年 第2卷 第2期   页码 134-139 doi: 10.1007/s11708-008-0027-0

摘要: The future of circulating fluidized bed (CFB) combustion technology is in raising the steam parameters to supercritical levels. Understanding the heat flux distribution on the water wall is one of the most important issues in the design and operation of supercritical pressure CFB boilers. In the present paper, the finite element analysis (FEA) method is adopted to predict the heat transfer coefficient as well as the heat flux of the membrane wall and the results are validated by direct measurement of the temperature around the tube. Studies on the horizontal heat flux distribution were conducted in three CFB boilers with different furnace size, tube dimension and water temperature. The results are useful in supercritical pressure CFB boiler design.

关键词: horizontal     different furnace     temperature     FEA     measurement    

superhydrophilic/underwater superoleophobic stainless steel mesh for oil/water separation with ultrahigh flux

《化学科学与工程前沿(英文)》 2023年 第17卷 第1期   页码 46-55 doi: 10.1007/s11705-022-2170-2

摘要: Because of the increasing amount of oily wastewater produced each day, it is important to develop superhydrophilic/underwater superoleophobic oil/water separation membranes with ultrahigh flux and high separation efficiency. In this paper, a superhydrophilic/underwater superoleophobic N-isopropylacrylamide-coated stainless steel mesh was prepared through a simple and convenient graft polymerization approach. The obtained mesh was able to separate oil/water mixtures only by gravity. In addition, the mesh showed high-efficiency separation ability (99.2%) and ultrahigh flux (235239 L∙m–2∙h–1). Importantly, due to the complex cross-linked bilayer structure, the prepared mesh exhibited good recycling performance and chemical stability in highly saline, alkaline and acidic environments.

关键词: oil/water separation     N-isopropylacrylamide     stainless steel mesh     ultrahigh flux    

Brazing of ceramic-to-ceramic and ceramic-to-metal joints in air

Kirsten BOBZIN, Thomas SCHLAEFER, Lidong ZHAO, Nils KOPP, Arne SCHLEGEL

《机械工程前沿(英文)》 2010年 第5卷 第2期   页码 125-129 doi: 10.1007/s11465-010-0007-z

摘要: Reactive air brazing (RAB) is an emerging technology for the production of ceramic-to-ceramic and ceramic-to-metal joints. In this study, RAB was investigated with respect to the potential applications for solid oxide fuel cells (SOFCs) as one example of use. It was found that alumina could be well brazed by RAB with AgCu and AgCuTi brazes. Both braze composition and brazing temperature influenced significantly the wetting behavior and their mechanism of wetting. AgCu and AgCuTi braze alloys could also be used to produce brazed joints with the SOFC materials ceramic yttria stabilized zirconia and steel X1CrTiLa22. However, CuO reacts with the steel, forming a brittle oxide layer on the steel surface, which is undesirable for SOFC applications. The first trials with Ag0.5Al showed a promising solution.

关键词: reactive air brazing (RAB)     X1CrTiLa22     Al2O3     yttria stabilized zirconia (YSZ)     solid oxide fuel cell (SOFC)    

Cell-free systems in the new age of synthetic biology

Fernando Villarreal,Cheemeng Tan

《化学科学与工程前沿(英文)》 2017年 第11卷 第1期   页码 58-65 doi: 10.1007/s11705-017-1610-x

摘要: The advent of synthetic biology has ushered in new applications of cell-free transcription-translation systems. These cell-free systems are reconstituted using cellular proteins, and are amenable to modular control of their composition. Here, we discuss the historical advancement of cell-free systems, as well as their new applications in the rapid design of synthetic genetic circuits and components, directed evolution of biomolecules, diagnosis of infectious diseases, and synthesis of vaccines. Finally, we present our vision on the future direction of cell-free synthetic biology.

关键词: cell-free system     application    

标题 作者 时间 类型 操作

Influence of the filler materials on flux-free brazing of pure aluminium (1050)

Kirsten BOBZIN, Lidong ZHAO, Thomas SCHLAEFER, Thomas WARDA,

期刊论文

Application of cold spraying for flux-free brazing of aluminium alloy 6060

Kirsten BOBZIN, Lidong ZHAO, Thomas SCHLAEFER, Thomas WARDA,

期刊论文

Flux-free brazing of Mg-containing aluminium alloys by means of cold spraying

BOBZIN Kirsten, ZHAO Lidong, ERNST Felix, RICHARDT Katharina

期刊论文

Wide gap active brazing of ceramic-to-metal-joints for high temperature applications

K. Bobzin,L. Zhao,N. Kopp,S. Samadian Anavar

期刊论文

High heat flux thermal management through liquid metal driven with electromagnetic induction pump

期刊论文

Observation of bioturbation and hyporheic flux in streambeds

Jinxi SONG, Xunhong CHEN, Cheng CHENG,

期刊论文

Flow, thermal, and vibration analysis using three dimensional finite element analysis for a flux reversal

B. VIDHYA,K. N. SRINIVAS

期刊论文

Preparation of reverse osmosis membrane with high permselectivity and anti-biofouling properties for desalination

期刊论文

Numerical simulation of the heat flux distribution in a solar cavity receiver

Yueshe WANG, Xunwei DONG, Jinjia WEI, Hui JIN

期刊论文

Heat transfer characteristics of high heat flux vapor chamber

Dongchuan MO, Shushen LU, Haoliang ZHENG, Chite CHIN,

期刊论文

Metabolic flux analysis on arachidonic acid fermentation

JIN Mingjie, HUANG He, ZHANG Kun, YAN Jie, GAO Zhen

期刊论文

Heat flux distribution on circulating fluidized bed boiler water wall

LU Junfu, YUE Guangxi, YANG Hairui, ZHANG Jiansheng, YU Long, ZHANG Man, YANG Zhongming

期刊论文

superhydrophilic/underwater superoleophobic stainless steel mesh for oil/water separation with ultrahigh flux

期刊论文

Brazing of ceramic-to-ceramic and ceramic-to-metal joints in air

Kirsten BOBZIN, Thomas SCHLAEFER, Lidong ZHAO, Nils KOPP, Arne SCHLEGEL

期刊论文

Cell-free systems in the new age of synthetic biology

Fernando Villarreal,Cheemeng Tan

期刊论文